_ABORATORY TESTS

iTEKT has conducted several laboratory tests to confirm the ITEKT Windshield product's durability and resistance towards scratches, shattering, and UV light.

Scratch test - ASTM international (E2546/ISO 14577)

	Detail results- Scratch Region 1 (mN)						
	Untreated sample	ITEKT treated sample					
1	90.48	115.4					
2	90.61	115.6					
3	94.75	115.5					
Average	91.95	115.5					

In-sum, by comparing the average of millinewton (mN) of both samples required for the scratch at Region 1, there is an increase in resistance of the ITEKT treated sample by 25.61%.

Accelerated UV Light Aging test - ASTM international (D523-D2244)

ASTM D523 - Specular Gloss ASTM D2244 - Calculation of Color Tolerances and Color Differences

Carrowle	Initials	values	ASTM G155		
Sample	L*	a*	b*	Gloss 60°	
Untreated sample	82.9	-2.3	0.8	99.9	
ITEKT treated sample	81.7	-2.3	0.7	96.5	
White reference plate	93.0	-0.2	1.0	NA	

Consula	2,000 hours		AST	M G155	1.*	*	L.*	Gloss
Sample	L*	a*	b*	Gloss 60°	L	a.	D	%
Untreated sample	86.8	-2.4	1.1	104.4	3.9	-0.1	0.2	4
ITEKT treated sample	86.8	-2.4	1.0	104.9	4.9	-0.1	0.2	7

After 2,000 hours of UV exposure, the ITEKT treated sample:

- Did not show yellowing or color change since the measurements on the a* axis and b* axis did not change significantly.
- Its transparency got better since the L* axis measurements got closer to the white reference plate (93.0).
- The gloss measurements increased more than the untreated sample by 4%

71N pressure with a point

Xenon Arc emission lamp equipment used

LABORATORY TESTS

Impact test - Laboratory certification

Report No. 1373

The intent of the program is to compare the amount of energy required for a given impactor to break a typical windshield, in both untreated and treated versions.

- Support the impact surface area with a 3 arms support
- Impactor: steel ball, 1 ¼ diameter, 4.6 ounces

Results of the impact test

 $iT \equiv KT$

			Impact test height					
Condition	Sample	Location	15 ft	16 ft	17 ft	18 ft	19 ft	20 ft
Untreated sample		Left	×					
	1	Center		×				
		Right		×				
		Left	×					
	2	Center						
		Right	×					
	З	Left				Xs		
		Center					×	
		Right						Xs
		Left				Xs		
	4	Center						×
		Right						Ø
	5	Left						×
IIEKI treated		Center	N/a	N/a	N/a	N/a	N/a	N/a
sample		Right				×		
	6	Left						Ø
		Center						Ø
		Right						Ø
	7	Left						Ø
		Center						Ø
		Right						Xs

POLYTESTS

LEGEND: \bigstar Failure at the impact location $\not O$ No failure Location: Location of the impact

 $igkap_{s}$ Failure at the support area (underneath the treated surface)

The energy levels represented by the height of the impactor at which no failure of the samples occurred, were as follows:

1. Bare windshield: Hb = 14 feet;

2. Treated windshield: Ht = 17 feet

In terms of energy gain to break the windshield with the impactor, we can calculate the increase in resistance (Ri) as follows: Ri (%) = (Ht – Hb) / Hb \times 100 = **21%**